Role of exonucleolytic degradation in group I intron homing in phage T4.
نویسندگان
چکیده
Homing of the phage T4 td intron is initiated by the intron-encoded endonuclease I-TevI, which cleaves the intronless allele 23 and 25 nucleotides upstream of the intron insertion site (IS). The distance between the I-TevI cleavage site (CS) and IS implicates endo- and/or exonuclease activities to resect the DNA segment between the IS and CS. Furthermore, 3' tails must presumably be generated for strand invasion by 5'-3' exonuclease activity. Three experimental approaches were used to probe for phage nucleases involved in homing: a comparative analysis of in vivo homing levels of nuclease-deficient phage, an in vitro assay of nuclease activity and specificity, and a coconversion analysis of flanking exon markers. It was thereby demonstrated that T4 RNase H, a 5'-3' exonuclease, T4 DNA exonuclease A (DexA) and the exonuclease activity of T4 DNA polymerase (43Exo), 3'-5' exonucleases, play a role in intron homing. The absence of these functions impacts not only homing efficiency but also the extent of degradation and flanking marker coconversion. These results underscore the critical importance of the 3' tail in intron homing, and they provide the first direct evidence of a role for 3' single-stranded DNA ends as intermediates in T4 recombination. Also, the involvement of RNase H, DexA, and 43Exo in homing provides a clear example of the harnessing of functions variously involved in phage nucleic acid metabolism for intron propagation.
منابع مشابه
Intron mobility in phage T4 occurs in the context of recombination-dependent DNA replication by way of multiple pathways.
Numerous group I introns in both prokaryotes and eukaryotes behave as mobile genetic elements. The functional requirements for intron mobility were determined in the T4 phage system using an in vivo assay to measure intron homing with wild-type and mutant derivatives. Thus, it was demonstrated that intron mobility occurs in the context of phage recombination-dependent replication, a pathway tha...
متن کاملPhage T4 mobE promotes trans homing of the defunct homing endonuclease I-TevIII
Homing endonucleases are site-specific DNA endonucleases that typically function as mobile genetic elements by introducing a double-strand break (DSB) in genomes that lack the endonuclease, resulting in a unidirectional gene conversion event that mobilizes the homing endonuclease gene and flanking DNA. Here, we characterize phage T4-encoded mobE, a predicted free-standing HNH family homing endo...
متن کاملDistance determination by GIY-YIG intron endonucleases: discrimination between repression and cleavage functions
GIY-YIG homing endonucleases are modular proteins, with conserved N-terminal catalytic domains connected by linkers to C-terminal DNA-binding domains. I-TevI, the T4 phage GIY-YIG intron endonuclease, functions both in promoting td intron homing, and in acting as a transcriptional autorepressor. Repression is achieved by binding to an operator, which is cleaved at 100-fold reduced efficiency re...
متن کاملHoming endonuclease I-TevIII: dimerization as a means to a double-strand break
Homing endonucleases are unusual enzymes, capable of recognizing lengthy DNA sequences and cleaving site-specifically within genomes. Many homing endonucleases are encoded within group I introns, and such enzymes promote the mobility reactions of these introns. Phage T4 has three group I introns, within the td, nrdB and nrdD genes. The td and nrdD introns are mobile, whereas the nrdB intron is ...
متن کاملA Free-Standing Homing Endonuclease Targets an Intron Insertion Site in the psbA Gene of Cyanophages
Homing endonuclease genes are mobile elements that promote their duplication into cognate sites that lack the endonuclease gene [1, 2]. The homing endonuclease initiates this event through site-specific DNA cleavage. Copying of the endonuclease gene follows as a consequence of DNA repair. A genome containing a homing endonuclease gene is subject to self-cleavage. Protection is accomplished thro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 153 4 شماره
صفحات -
تاریخ انتشار 1999